Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

(2x1)(4x2+2x+1)(x+5)(x25x+25)
(2x-1)*(4x^2+2x+1)*(x+5)*(x^2-5x+25)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  ((8 • (x6)) +  (33•37x3)) -  125

Step  2  :

Equation at the end of step  2  :

  (23x6 +  (33•37x3)) -  125

Step  3  :

Trying to factor by splitting the middle term

 3.1     Factoring  8x6+999x3-125 

The first term is,  8x6  its coefficient is  8 .
The middle term is,  +999x3  its coefficient is  999 .
The last term, "the constant", is  -125 

Step-1 : Multiply the coefficient of the first term by the constant   8 • -125 = -1000 

Step-2 : Find two factors of  -1000  whose sum equals the coefficient of the middle term, which is   999 .

     -1000   +   1   =   -999
     -500   +   2   =   -498
     -250   +   4   =   -246
     -200   +   5   =   -195
     -125   +   8   =   -117
     -100   +   10   =   -90
     -50   +   20   =   -30
     -40   +   25   =   -15
     -25   +   40   =   15
     -20   +   50   =   30
     -10   +   100   =   90
     -8   +   125   =   117
     -5   +   200   =   195
     -4   +   250   =   246
     -2   +   500   =   498
     -1   +   1000   =   999   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -1  and  1000 
                     8x6 - 1x3 + 1000x3 - 125

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x3 • (8x3-1)
              Add up the last 2 terms, pulling out common factors :
                    125 • (8x3-1)
Step-5 : Add up the four terms of step 4 :
                    (x3+125)  •  (8x3-1)
             Which is the desired factorization

Trying to factor as a Difference of Cubes:

 3.2      Factoring:  8x3-1 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  8  is the cube of  2 

Check :  1  is the cube of   1 
Check :  x3 is the cube of   x1

Factorization is :
             (2x - 1)  •  (4x2 + 2x + 1) 

Trying to factor by splitting the middle term

 3.3     Factoring  4x2 + 2x + 1 

The first term is,  4x2  its coefficient is  4 .
The middle term is,  +2x  its coefficient is  2 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   4 • 1 = 4 

Step-2 : Find two factors of  4  whose sum equals the coefficient of the middle term, which is   2 .

     -4   +   -1   =   -5
     -2   +   -2   =   -4
     -1   +   -4   =   -5
     1   +   4   =   5
     2   +   2   =   4
     4   +   1   =   5


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Trying to factor as a Sum of Cubes :

 3.4      Factoring:  x3+125 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  125  is the cube of   5 
Check :  x3 is the cube of   x1

Factorization is :
             (x + 5)  •  (x2 - 5x + 25) 

Trying to factor by splitting the middle term

 3.5     Factoring  x2 - 5x + 25 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -5x  its coefficient is  -5 .
The last term, "the constant", is  +25 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 25 = 25 

Step-2 : Find two factors of  25  whose sum equals the coefficient of the middle term, which is   -5 .

     -25   +   -1   =   -26
     -5   +   -5   =   -10
     -1   +   -25   =   -26
     1   +   25   =   26
     5   +   5   =   10
     25   +   1   =   26


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (2x-1)•(4x2+2x+1)•(x+5)•(x2-5x+25)

Why learn this

Latest Related Drills Solved